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Abstract- Non oscillation o f  a class of nonlinear n e u t r a l  delay 

difference e q u a t i o n s  w i t h  positive and negative 

coefficients of the form  

 

  

  )())(()())(()()()()( 222111 nfknyGnfknyGnfmnynpny 
                (E) 

 

  is studied.  We obtain the sufficient conditions for the existence 

of a bounded nonoscillatory solutions of (E) under the 

assumption 
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I. INTRODUCTION 
 
      In this paper we study nonoscillation of a class of non 

homogeneous neutral delay difference equations with positive and 

negative coefficients of the form 

                   

  ),())(()())(()()()()( 222111 nfknyGnfknyGnfmnynpny 
       (1) 

where ),(np )(1 nf , )(2 nf , )(nf
 

are real valued functions 

defined on set 0 0 0 0( ) { , 1, 2,......}N n n n n   , 00 n  

such that 0)(1 nf , ,0)(2 nf ,0)( nf
1G , 2G  are 

continuous real valued functions. 1G  and 2G   are non decreasing 

and 0)( xxGi  for i=1, 2, ,0x 0n  and 0,, 21 mkk  

are integers,   is forward difference operator defined by equation,  

                                   ).()1()( nxnxnx 
 

The corresponding differential equation to the difference equation (1) 

can be written as  

                

  ).())(()())(()()()()( 222111 tftyGtftyGtftytpty
dt

d
 

                  (2) 

                 It is to remark that this equation when 

0)(,0)(2  tptf  becomes a first order delay differential 

equation and we find numerous results regarding the solutions of this 

equations. we refer to [1],[2] and [3]and the references therein.  

Several researchers discussed nonoscillation and asymptotic behavior 

of solution of delay and neutral difference equations of first order.  A 

close observation reveals that the study of difference equation is more 

or less similar to that of a differential equation. (See [4], [6], [7], [8] and 

[10]).  In the recent papers [7, 8].
 

Parhi and Tripathy discussed 

oscillation and asymptotic behavior of solution of the equation 
 

            

  ),())(()()()( 111 nfknyGnfmnyny                                                      

(3) 

       when 0)(1 nf  or  when 0)(1 nf  under the condition  

                 

 

.)(
0

1 




nf
n

 

It is predicted that the oscillation properties are not restricted to the 

sign of 1f .The motivation of the present work comes under two 

directions: firstly due to the above prediction and next due to the work 

in [5], where the authors considered the linear neutral differential 

equation  

              

  ),()()()()()}()({ 2211 tftytftytftpyty
dt

d
 

                         (4)   

 where 1p
 
is constant. The discrete analogue of equation (4) is 

a particular case of our equation (1). When 0)( nf the existence 

of nonosillatory solutions was discussed in [9].  We consider various 

ranges of )(np  and present the nonoscillation behavior of the 

solution. 
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We recall that, by a solution of equation (1) on )( 0nN , we mean a 

real valued function )(ny defined on 

...................3,2,1,)(  N  , which 

satisfies (1) for ,00  nn  where  21,,max kkn . 

If  ,.....2,1,0.....1,,)(  nAny n                                                            



are given, then equation (1) admits a unique solution satisfying the 

initial condition (5). As is customary, a solution of (1) is said to be 

oscillate if for every integer 0N , there exists and Nn   such 

that .0)1()( nyny  Otherwise, the solution is called 

nonoscillatory. 

1.   We need the following the hypotheses in our discussion: 

 

  )( 1H   :   iG    ,),( RRC     iG  is non decreasing for 

).,(,2,1  Ri
 

  
)( 2H   :    0)( xxGi   for 0x ,  .2,1i

 

  
)( 3H   :   ,iG  2,1i  is Lipschitizain on the interval of the type 

[a, b], .0  ba  

 
)( 4H   :    






0

)(
n

i nf   for  .2,1i
 

Now we have the following:  

THEOREM 2.1:   Suppose that 1)(0 1 bnp  and 

)()( 41 HH   hold.  If  

                              ,)(
0






nf
n

                                                      

(6)            

   then there exists a bounded nonoscillatory solution of the equation 

(1).   

Proof:  Since  1G  and 2G are Lipschitizain on the interval of the 

type [a, b], there exists   

              ,1L 2L
 
such that  

                     

2112111 )()( yyLyGyG  and 

                     2122212 )()( yyLyGyG     for 
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1
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b
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Let    )(,max,)(,max 12221111 bGLMbGLM  . 

From hypotheses, we can find positive integer 1N  such that 
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 We consider 
1N

lX   be the Banach space of all real valued 

functions )(nx , 1Nn   with supremum norm                  

                                     

                                      .:)(sup 1Nnnxx 
 

 
   

And let 
 

                                    

.,1)(
40

1
: 1

1












 Nnnx
b

XxS

 

 It is easy to see that S is a complete metric space, where the metric is 

induced by norm on X.  

 

For Sy ,we define the operator T as below:   

 

                             

.),()( 111   NnNNTynTy
                             

       

(8)                                                                                 
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 In view of hypotheses, we observe that    

 1Nn
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(  from (7)  ) 
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Consequently STy , that is SST : . 

 

Further for Sx , consider  
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xybxybnTxnTy 
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       Thus  xy
b

nTxnTy 



20

19
)()( 1

   for 

every Syx , .  

 

       Hence T is contraction. By Banach fixed point theorem,  T has a 

unique fixed point )(ny  in S, which will be a solution of equation 

(1) such that .1)(
40

1 1 


nTy
b

 we observe that this 

solution )(ny is nonoscillatory and bounded. 

 

 

Now for ,0)(1 2  npb  we have the following result: 

 

THEOREM 2.2:   Suppose  0)(1 2  npb  and 

)()( 41 HH   hold.  If  

                              
,)(

0






nf
n                 

then the equation (1) admits a bounded nonoscillatory solution. 

Proof:  We can choose a positive integer 
1N  so large that
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  where 
21,MM and 

1N  are same as in The o r em  2 .1  on the 

interval .1,
20

1 2
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 Let 
1N

lX   be the Banach space of all real valued functions )(nx , 

1Nn   with supremum norm  

                                                    

                                    .:)(sup 1Nnnxx      

 

 

Let 
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2 ,1)(

20

1
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b
XxS  . 

    Again, it is easy to see that S is a complete metric space, where the 

metric is induced by norm on X.

 

 

Define a mapping T as 
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ss

sfM
b

bnTy )(
5

1
)( 11

2
2             

   

                                        5

1

5

1 22
2

bb
b







                        

( from (9)  )

 

                                         ,1
5

32 2 



b

  
 

  and 

 

                               

.
20

1

20

1

10

1

5

1
)(

2

222

b

bbb
nTy













                      

( from (9)  )

 

 

 Consequently .STy    

 

For Sx , we have  

              

xy
b

xy
b

xynpnTxnTy 






10

1

5

1
)()()( 22

 

 

                                    xy
bb

b 






 





10

1

5

1 22
2   

 

                                    ,
10

73 2 xy
b





 

 

 that is 
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so that T is a contraction on S. Therefore T has a unique fixed 

point y(n) in S, which will be nonoscillatory solution of equation (1) 

in the interval ,1,
20

1 2








 b
which is also bounded. 

Thus the proof is complete.  

 

Remark 2.3: Following the lines of the proofs of Theorem 2.1 and 

Theorem 2.2, we can prove the existence of bounded 

nonoscillatory solution of the equation (1) when 

(i) ;1)(1  np  

(ii) .1)(1)(  npornp   

       

  However the details are omitted. 
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