Existence of Bounded Nonoscillatory Solutions of Certain Nonlinear Neutral Delay Difference Equations

K.V.V.Seshagiri Rao, A.K. Tripathy, K.Venumadav, T.Gopal Rao

Abstract- Non oscillation of a class of nonlinear neutral delay difference equations with positive and negative coefficients of the form
$\Delta[y(n)+p(n) y(n-m)]+f_{1}(n) G_{1}\left(y\left(n-k_{1}\right)\right)-f_{2}(n) G_{2}\left(y\left(n-k_{2}\right)\right)=f(n)$
(E)
is studied. We obtain the sufficient conditions for the existence of a bounded nonoscillatory solutions of (E) under the assumption

$$
\sum_{n=0}^{\infty} f_{i}(n)<\infty, \quad \text { for } i=1,2
$$

Mathematics Subject classification (2000): 39A10, 39A12.
Keywords: Oscillation, Non-oscillation, Neutral Difference Equation.

I. INTRODUCTION

In this paper we study nonoscillation of a class of non homogeneous neutral delay difference equations with positive and negative coefficients of the form
$\Delta[y(n)+p(n) y(n-m)]+f_{1}(n) G_{1}\left(y\left(n-k_{1}\right)\right)-f_{2}(n) G_{2}\left(y\left(n-k_{2}\right)\right)=f(n)$,
(1)
where $p(n), f_{1}(n), f_{2}(n), f(n)$ are real valued functions defined on set $N\left(n_{0}\right)=\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots \ldots.\right\}, \quad n_{0} \geq 0$ such that $f_{1}(n) \geq 0, f_{2}(n) \geq 0, f(n) \geq 0, G_{1}, G_{2} \quad$ are continuous real valued functions. G_{1} and G_{2} are non decreasing and $x G_{i}(x)>0$ for $\mathrm{i}=1,2, x \neq 0, n>0$ and $k_{1}, k_{2}, m \geq 0$ are integers, Δ is forward difference operator defined by equation,

$$
\Delta x(n)=x(n+1)-x(n)
$$

The corresponding differential equation to the difference equation (1) can be written as

$$
\begin{equation*}
\frac{d}{d t}[y(t)+p(t) y(t-\tau)]+f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right)-f_{2}(t) G_{2}\left(y\left(t-\sigma_{2}\right)\right)=f(t) \tag{2}
\end{equation*}
$$

It is to remark that this equation when $f_{2}(t) \equiv 0, p(t) \equiv 0$ becomes a first order delay differential equation and we find numerous results regarding the solutions of this equations. we refer to [1],[2] and [3]and the references therein. Several researchers discussed nonoscillation and asymptotic behavior of solution of delay and neutral difference equations of first order. A close observation reveals that the study of difference equation is more or less similar to that of a differential equation. (See [4], [6], [7], [8] and [10]). In the recent papers [7, 8]. Parhi and Tripathy discussed oscillation and asymptotic behavior of solution of the equation

$$
\Delta[y(n)-y(n-m)]+f_{1}(n) G_{1}\left(y\left(n-k_{1}\right)\right)=f(n),
$$

(3)
when $f_{1}(n)<0$ or when $f_{1}(n)>0$ under the condition

$$
\sum_{n=0}^{\infty} f_{1}(n)=\infty
$$

It is predicted that the oscillation properties are not restricted to the sign of f_{1}. The motivation of the present work comes under two directions: firstly due to the above prediction and next due to the work in [5], where the authors considered the linear neutral differential equation

$$
\frac{d}{d t}\left(\{y(t)+p y(t-\tau)\}+f_{1}(t) y\left(t-\sigma_{1}\right)-f_{2}(t) y\left(t-\sigma_{2}\right)\right)=f(t)
$$

(4)
where $p \neq-1$ is constant. The discrete analogue of equation (4) is a particular case of our equation (1). When $f(n)=0$ the existence of nonosillatory solutions was discussed in [9]. We consider various ranges of $p(n)$ and present the nonoscillation behavior of the solution.

We recall that, by a solution of equation (1) on $N\left(n_{0}\right)$, we mean a real valued function $y(n)$ defined on $N(-\rho)=-\rho,-\rho+1,-\rho+2,-\rho+3 \ldots \ldots \ldots \ldots \ldots . \quad$, which satisfies (1) for $n \geq n_{0} \geq 0$, where $\rho=\max \left\{n, k_{1}, k_{2}\right\}$.

If $\quad y(n)=A_{n}, \quad n=-\rho,-\rho+1 \ldots .0,1,2, \ldots$. (5)
are given, then equation (1) admits a unique solution satisfying the initial condition (5). As is customary, a solution of (1) is said to be oscillate if for every integer $N>0$, there exists and $n \geq N$ such that $y(n) y(n+1) \leq 0$. Otherwise, the solution is called nonoscillatory.

1. We need the following the hypotheses in our discussion:
$\left(H_{1}\right): G_{i} \in C(R, R), \quad G_{i}$ is non decreasing for $i=1,2, \quad R=(-\infty, \infty)$.
$\left(H_{2}\right): x G_{i}(x)>0$ for $x \neq 0, \quad i=1,2$.
$\left(H_{3}\right): G_{i}, i=1,2$ is Lipschitizain on the interval of the type [a, b], $0<a<b<\infty$.
$\left(H_{4}\right): \quad \sum_{n=0}^{\infty} f_{i}(n)<\infty$ for $i=1,2$.
Now we have the following:
THEOREM 2.1: Suppose that $0 \leq p(n) \leq b_{1}<1$ and $\left(H_{1}\right)-\left(H_{4}\right)$ hold. If

$$
\sum_{n=0}^{\infty} f(n)<\infty
$$

(6)
then there exists a bounded nonoscillatory solution of the equation (1).

Proof: Since G_{1} and G_{2} are Lipschitizain on the interval of the type [a, b], there exists

$$
\begin{aligned}
& \qquad L_{1}, L_{2} \text { such that } \\
& \left|G_{1}\left(y_{1}\right)-G_{1}\left(y_{2}\right)\right| \leq L_{1}\left|y_{1}-y_{2}\right| \quad \text { and }
\end{aligned}
$$

$$
\left|G_{2}\left(y_{1}\right)-G_{2}\left(y_{2}\right)\right| \leq L_{2}\left|y_{1}-y_{2}\right|
$$

for

$$
y_{1}, y_{2} \in\left[\frac{1-b_{1}}{40}, 1\right]
$$

Let $\quad M_{1}=\max \left\{L_{1}, G_{1}\left(b_{1}\right)\right\}, M_{2}=\max \left\{L_{2}, G_{2}\left(b_{1}\right)\right\}$.
From hypotheses, we can find positive integer N_{1} such that

$$
\begin{aligned}
\mathbf{M}_{1} \sum_{n=N_{1}}^{\infty} f_{1}(n)<\frac{9}{10 \mathbf{M}_{1}}\left(1-b_{1}\right), \\
\mathbf{M}_{2} \sum_{n=N_{1}}^{\infty} f_{2}(n)<\frac{1}{20 \mathbf{M}_{2}}\left(1-b_{1}\right)
\end{aligned}
$$

(7)

$$
\sum_{n=N_{1}}^{\infty} f(n)<\frac{1-b_{1}}{40}
$$

We consider $X=l_{\infty}^{N_{1}}$ be the Banach space of all real valued functions $x(n), n \geq N_{1}$ with supremum norm

$$
\|x\|=\sup \left\{|x(n)|: n \geq N_{1}\right\}
$$

And let

$$
S=\left\{x \in X: \frac{1-b_{1}}{40} \leq x(n) \leq 1, \quad n \geq N_{1}\right\}
$$

It is easy to see that S is a complete metric space, where the metric is induced by norm on X .

For $y \in S$, we define the operator T as below:

$$
T y(n)=T y\left(N_{1}+\rho\right), \quad N_{1} \leq n \leq N_{1}+\rho
$$

$$
\begin{gather*}
=-p(n) y(n-m)+\frac{1+4 b_{1}}{5}+\sum_{s=n}^{\infty} f_{1}(s) G_{1}\left(y\left(s-k_{1}\right)\right) \tag{8}\\
-\sum_{s=n}^{\infty} f_{2}(s) G_{2}\left(y\left(s-k_{2}\right)\right)-\sum_{s=n}^{\infty} f(s) \\
n \geq N_{1}+\rho
\end{gather*}
$$

In view of hypotheses, we observe that

$$
\begin{aligned}
T y(n) & <\frac{1+9 b_{1}}{10}+M_{1} \sum_{s=n}^{\infty} f_{1}(s) \\
& <\frac{1+9 b_{1}}{10}+\frac{9}{10}\left(1-b_{1}\right)
\end{aligned}
$$

(from (7))

$$
=1
$$

and

$$
\begin{array}{r}
T y(n)>-b_{1}+\frac{1+9 b_{1}}{10}-M_{2} \sum_{i=s}^{\infty} f_{2}(s)-\sum_{s=n}^{\infty} f(s) \\
>-b_{1}+\frac{1+9 b_{1}}{10}-\frac{1-b_{1}}{20}-\frac{1-b_{1}}{40}
\end{array}
$$

(from (7))

$$
=\frac{1-b_{1}}{40}, \quad \text { for } \mathrm{n} \geq \mathrm{N}_{1}+\rho
$$

ie, $\quad \frac{1-b_{1}}{40}<T y(n)<1$.
Consequently $T y \in S$, that is $T: S \rightarrow S$.

Further for $x \in S$, consider

$$
\begin{aligned}
&|T y(n)-T x(n)| \leq b_{1}\|y-x\|+\frac{9}{10}\left(1-b_{1}\right)\|y-x\|+\frac{1-b_{1}}{20}\|y-x\| \\
&=\left(b_{1}+\frac{9}{10}\left(1-b_{1}\right)+\frac{1-b_{1}}{20}\right)\|y-x\| \\
&=\frac{19+b_{1}}{20}\|y-x\|
\end{aligned}
$$

$$
\text { Thus } \quad|T y(n)-T x(n)| \leq \frac{19+b_{1}}{20}\|y-x\| \quad \text { for }
$$

every $x, y \in S$.

Hence T is contraction. By Banach fixed point theorem, T has a unique fixed point $y(n)$ in S , which will be a solution of equation (1) such that $\frac{1-b_{1}}{40}<T y(n)<1$. we observe that this solution $y(n)$ is nonoscillatory and bounded.

THEOREM 2.2: Suppose $-1 \leq b_{2} \leq p(n) \leq 0$ and $\left(H_{1}\right)-\left(H_{4}\right)$ hold. If

$$
\sum_{n=0}^{\infty} f(n)<\infty
$$

then the equation (1) admits a bounded nonoscillatory solution.
Proof: We can choose a positive integer N_{1} so large that

$$
\begin{aligned}
& M_{1} \sum_{n=N_{1}}^{\infty} f_{1}(n)<\frac{1+b_{2}}{5} \\
& M_{2} \sum_{n=N_{1}}^{\infty} f_{2}(n)<\frac{1+b_{2}}{10} \\
& \quad \sum_{n=N_{1}}^{\infty} f(n)<\frac{1+b_{2}}{20}
\end{aligned}
$$

(9)
where M_{1}, M_{2} and N_{1} are same as in Theorem 2.1 on the interval $\left[\frac{1+b_{2}}{20}, 1\right]$

Let $X=l_{\infty}^{N_{1}}$ be the Banach space of all real valued functions $x(n)$, $n \geq N_{1}$ with supremum norm

$$
\|x\|=\sup \left\{|x(n)|: n \geq N_{1}\right\}
$$

Let

$$
S=\left\{x \in X: \frac{1+b_{2}}{20} \leq x(n) \leq 1, \quad n \geq N_{1}\right\}
$$

Again, it is easy to see that S is a complete metric space, where the metric is induced by norm on X .

Define a mapping T as

$$
\begin{equation*}
T y(n)=T y\left(N_{1}+\rho\right), \quad N_{1} \leq n \leq N_{1}+\rho \tag{10}
\end{equation*}
$$

Now for $-1 \leq b_{2} \leq p(n) \leq 0$, we have the following result:

$$
\begin{aligned}
& =-p(n) y(n-m)+\frac{1+b_{2}}{5}+\sum_{s=n}^{\infty} f_{1}(s) G_{1}\left(y\left(s-k_{1}\right)\right) \quad \begin{array}{l}
\text { so that } \mathrm{T} \text { is a contraction on } \mathrm{S} \text {. Therefore } \mathrm{T} \text { has a unique fixed } \\
\text { point } \mathrm{y}(\mathrm{n}) \text { in } \mathrm{S} \text {, which will be nonoscillatory solution of equation (1) }
\end{array} \\
& -\sum_{s=n}^{\infty} f_{2}(s) G_{2}\left(y\left(s-k_{2}\right)\right)-\sum_{s=n}^{\infty} f(s), n \geq N_{1}+\rho \text { in the interval }\left[\frac{1+b_{2}}{20}, 1\right], \text { which is also bounded. }
\end{aligned}
$$

For $y \in S$ and $n \geq N_{1}+\underline{\rho}$,

$$
\begin{aligned}
T y(n) & \leq-b_{2}+\frac{1+b_{2}}{5}+M_{1} \sum_{s=s}^{\infty} f_{1}(s) \\
& <-b_{2}+\frac{1+b_{2}}{5}+\frac{1+b_{2}}{5}
\end{aligned}
$$

Remark 2.3: Following the lines of the proofs of Theorem 2.1 and Theorem 2.2, we can prove the existence of bounded nonoscillatory solution of the equation (1) when
(i) $-1<p(n)<1$;
(ii) $\quad p(n)>1$ or $p(n)<-1$.

However the details are omitted.
REFERENCES
(from (9))

$$
=\frac{2-3 b_{2}}{5}<1
$$

and

$$
\begin{aligned}
T y(n) & \geq \frac{1+b_{2}}{5}-\frac{1+b_{2}}{10}-\frac{1+b_{2}}{20} \\
& =\frac{1+b_{2}}{20} .
\end{aligned}
$$

1. L.Berezansky, E.Braverman, Exponential stability of Difference Equtions with Several Delays,Advances in Difference Equtions, vol. 2009,pp.1-13.
2. R.D.Driver, G.Ladas,P.N.Vlahos, Asymptotic Behavior of A Linear Delay Difference Equation, Proc. Amer. Math. Soc., vol 115(1), 1992, 105-112.
3. S.Elaydi , An Introduction to Difference Equtions, Undergraduate Text in Mathematics, Springer, New York, NY, USA, $3^{\text {rd }}$ edition,2005.
(from (9))

Consequently $T y \in S$.

For $x \in S$, we have

$$
\begin{aligned}
|T y(n)-T x(n)| \leq & p(n)\|y-x\|+\frac{1+b_{2}}{5}\|y-x\|+\frac{1+b_{2}}{10}\|y-x\| \\
& =\left(-b_{2}+\frac{1+b_{2}}{5}+\frac{1+b_{2}}{10}\right)\|y-x\| \\
& =\frac{3-7 b_{2}}{10}\|y-x\|
\end{aligned}
$$

that is

$$
|T y(n)-T x(n)| \leq \frac{3-7 b_{2}}{10}\|y-x\|
$$

4. I.Gyori, G.Ladas, Oscillation theory of delay differential equations with applications, Ox-ford University Press, 1991.
5. M.R.S. Kulenovic, S. Hadziomerspahic, Existence of nonoscillatory solution for linear neutral delay differentialequation, Fasciculi Mathematici, Nr. 32(2001), 61-72.
6. G.Ladas, Y.G.Sficas, Oscillations of neutral delay differential equations, Canad, Math. Bull.29(1986), 438-445.
7. N. Parhi, A.K. Tripathy, On asymptotic behaviour and oscillation of forced first

Order nonlinear neutral difference equations, Fasciculi Mathematici, Nr. 32(2001), 83-95.
8. N. Parhi, A.K.Tripathy, Oscillation of a class of neutral difference euqations of first order, J.Diff. Eqns. and Appl. 9(2003), 933-946.
9. K.V.V.Seshagiri Rao, A.K.Tripathy, T.Gopal Rao, Non oscillatory solutions of certain nonlinear neutral delay difference equations, Proceedinges of National conference on 'Interdisciplinary applications of Mathematical \& Statistical techniques', ISMAS, (2012).
10. J. Yu, Z. Wang, C. Qian, Oscillation and non oscillation of neutral delay differential Equations, Bull. Austral, Math. 45 (1992), 195-200.

